Showing posts with label low. Show all posts
Showing posts with label low. Show all posts

Very Low Power 32kHz Oscillator

,
The 32-kHz low-power clock oscillator offers numerous advantages over conventional oscillator circuits based on a CMOS inverter. Such inverter circuits present problems, for example, supply currents fluctuate widely over a 3V to 6V supply range, while current consumption below 250 µA is difficult to attain. Also, operation can be unreliable with wide variations in the supply voltage and the inverter’s input characteristics are subject to wide tolerances and differences among manufacturers. The circuit shown here solves the above problems. Drawing just 13 µA from a 3V supply, it consists of a one-transistor amplifier/oscillator (T1) and a low-power comparator/reference device (IC1).

Very Low Power 32kHz OscillatorThe base of T1 is biased at 1.25 V using R5/R4 and the reference in IC1. T1 may be any small-signal transistor with a decent beta of 100 or so at 5µA (defined here by R3, fixing the collector voltage at about 1 V below Vcc). The amplifier’s nominal gain is approximately 2 V/V. The quartz crystal combined with load capacitors C1 and C3 forms a feedback path around T1, whose 180 degrees of phase shift causes the oscillation. The bias voltage of 1.25 V for the comparator inside the MAX931 is defined by the reference via R2. The comparator’s input swing is thus accurately centered around the reference voltage.

Operating at 3 V and 32 kHz, IC1 draws just 7 µA. The comparator output can source and sink 40mA and 5mA respectively, which is ample for most low-power loads. However, the moderate rise/fall times of 500 ns and 100 ns respectively can cause standard, high-speed CMOS logic to draw higher than usual switching currents. The optional 74HC14 Schmitt trigger shown at the circuit output can handle the comparator’s rise/fall times with only a small penalty in supply current.
Read more →

500W Low Cost 12V to 220V Inverter

,
Note :This Circuit is using high voltage that is lethal. Please take appropriate precautions
Using this circuit you can convert the 12V dc in to the 220V Ac. In this circuit 4047 is use to generate the square wave of 50hz and amplify the current and then amplify the voltage by using the step transformer. How to calculate transformer rating
500w_220v_inverter_corrected
The basic formula is P=VI and between input output of the transformer we have Power input = Power output
For example if we want a 220W output at 220V then we need 1A at the output. Then at the input we must have at least 18.3V at 12V because: 12V*18.3 = 220v*1
So you have to wind the step up transformer 12v to 220v but input winding must be capable to bear 20A.

Source :  http://www.ecircuitslab.com/2011/08/500w-low-cost-12v-to-220v-inverter.html
Read more →

2 3 Watt Low audio power amplifier

,
KA2202 , KA2207
These amplifiers using IC KA2202 and KA2207, which has a power output of 2.3 Watt berimpedansi 4 ohms. Minimum supply voltage and maximum 5Volt 20Volt. See schematics and component list below.



Part List 
R1 = 100K
R2 = 56R
R3 = 56R
R4 = 1R
Use 1/4 Watt resistor
10W schematic amplifier with KA2202 , KA2207

C1 = 100uF
C2 = 100uF
C4 = 100uF
C5 = 470uF
C6 = 100nF
C7 = 470pF
C8 = 2,2nF
C9 = 100uF
U1 = KA2202 , KA2207
Read more →

High Low Voltage Cutout Without Timer

,
This inexpensive circuit can be connected to an air-conditioner/fridge or to any other sophisticated electrical appliance for its protection. Generally, costly voltage stabilizers are used with such appliances for maintaining constant AC voltage. However, due to fluctuations in AC mains supply, a regular ‘click’ sound in the relays is heard. The frequent energisation/de-energisation of the relays leads to electrical noise and shortening of the life of electrical appliances and the relay/stabilizer itself. The costly yet fault-prone stabiliser may be replaced by this inexpensive high-low cutout circuit with timer.



The circuit is so designed that relay RL1 gets energised when the mains voltage is above 270V. This causes resistor R8 to be inserted in series with the load and thereby dropping most of the voltage across it and limiting the current through the appliance to a very low value. If the input AC mains is less than 180 volts or so, the low-voltage cut-off circuit interrupts the supply to the electrical appliance due to energisation of relay RL2. After a preset time delay of one minute (adjustable), it automatically tries again. If the input AC mains supply is still low, the power to the appliance is again interrupted for another one minute, and so on, until the mains supply comes within limits (>180V AC).



Circuit diagram:High Low Voltage Cutout Without Timer circuit diagram

The AC mains supply is resumed to appliance only when it is above the lower limit. When the input AC mains increases beyond 270 volts, preset VR1 is adjusted such that transistor T1 conducts and relay RL1 energises and resistance R8 gets connected in series with the electrical appliance. This 10-kilo-ohm, 20W resistor produces a voltage drop of approximately 200V, with the fridge as load. The value and wattage of resistor R8 may be suitably chosen according to the electrical appliance to be used. It is practically observed that after continuous use, the value of resistor R8 changes with time, due to heating. So adjustment of preset VR1 is needed two to three times in the beginning.



But once it attains a constant value, no further adjustment is required. This is the only adjustment required in the beginning, which is done using a variac. Further, the base voltage of transistor T2 is adjusted with the help of preset VR2 so that it conducts up to the lower limit of the input supply and cuts off when the input supply is less than this limit (say, 180V). As a result, transistor T3 remains cut off (with its collector remaining high) until the mains supply falls below the lower limit, causing its collector voltage to fall. The collector of transistor T3 is connected to the trigger point (pin 2) of IC1. When the input is more than the lower limit, pin 2 of IC1 is nearly at +Vcc.



In this condition the output of IC1 is low, relay RL2 is de-energised and power is supplied to the appliance through the N/C terminals of relay RL2. If the mains supply is less than the lower limit, pin 2 of IC1 becomes momentarily low (nearly ground potential) and thus the output of IC1 changes state from ‘low’ to ‘high’, resulting in energisation of relay RL2. As a result, power to the load/appliance is cut off. Now, capacitor C2 starts charging through resistor R6 and preset VR3. When the capacitor charges to (2/3)Vcc, IC1 changes state from ‘high’ to ‘low’. The value of preset VR3 may be so adjusted that it takes about one minute (or as desired) to charge capacitor C1 to (2/3)Vcc.



Relay is now de-energised and the power is supplied to the appliance if the mains supply voltage has risen above the lower cut-off limit, otherwise the next cycle repeats automatically. One additional advantage of this circuit is that both relays are de-energised when the input AC mains voltage lies within the specified limit and the normal supply is extended to the appliance via the N/C contacts of both relays.
Read more →

Low Power Voltage Doubler Circuit Diagram

,
All miniature electronic devices operate off batteries. Some of them need higher than the standard battery voltages to operate efficiently. If the battery of that specific voltage is unavailable, we are forced to connect additional cells in series to step up the DC voltage. Thus, the true meaning of miniaturisation is lost. A simple way to overcome this problem is to employ a voltage doubler, if the device under consideration can operate at a small current.

Here we present a low-power voltage doubler circuit that can be readily used with devices that demand higher voltage than that of a standard battery but low operating current to work with. The circuit is quite simple as it uses only a few components. Yet, the output efficiency is 75 to 85 percent along its operating voltage range. The available battery voltage is almost doubled at the output of the circuit.

Here IC1 is wired as an astable multivibrator to generate rectangular pulses at around 10 kHz. This frequency and duty cycle of the pulses can be varied using preset VR1. The pulses are applied to switching transistors T1 and T2 for driving the output section, which is configured as a voltage-doubling circuit. The doubled voltage is available across capacitor C5. During each cycle of the pulse occurance, the high level drives T1 into its saturation, keeping transistor T2 cut off.

Circuit diagram:

Low-Power Voltage Doubler Circuit Diagram

So transistor T1 charges capacitor C4 via the path formed by diodes D2 and D1 to a voltage level slightly lesser than the supply. But during the low period of the pulse, transistor T1 is cut off while transistor T2 is driven into saturation. Now, transistor T2 raises the charge on the negative pole of capacitor C4 by another step equal to the supply voltage. Therefore an equal amount of charging is built up on capacitor C5 via diode D3.

This doubling action increases the total voltage across capacitor C5 to almost double the input voltage. If the output of the pulse generator is maintained with a high enough amplitude and frequency, the output voltage and current remain constant and cater to the needs of the load. Even with the half-wave function, this circuit is almost free of ripple voltage. If the connected load doesn’t require a high current, the efficiency can be expected in the upper 90 percentranges.

Since the input voltage is doubled, the current drain from the input power supply is also doubled at the input but halved at the output. One point of caution is that if the multivibrator’s frequency is fairly high, the output may suffer with the interference imposed over the DC voltage. In this case, the frequency must be set favorably by trials and actual load connection procedure. This tiny circuit can be assembled on the general-purpose PCB. If all of the components are surface-mount type, the whole module can be genuinely miniaturized.

EFY Lab note. During testing with input of 8V and 1.25mA load current the output voltage was found to be around 13V.

Author :M.K. Chandra ,Mouleeswaran And A.N. Vadivudai Naayaki
Source: www . efymag . com
Read more →

Very Low Dropout Adjustable Breadboard Power Supply

,
This project details the design of a very low dropout adjustable power supply. A good power supply is essential to electronic projects. While there are many existing designs for adjustable power supplies, this one makes improvements that make it more useful for hobby designs

Very Low Dropout Adjustable Breadboard Power SupplyMIC2941 regulator has guaranteed 1.25A output
Low dropout, only 40mV - 400mV compared to 1.25V - 2.0V for LM317. This means you can use a wider range of output voltages including generating 3.3V from as low as 3.7V (such as 3 AAs or a lithium ion battery)!
Short circuit and overheating protection
Input diode to protect circuitry from negative voltages or AC power supplies.
2.1mm DC jack and terminal connector for voltage inputs
Two indicator LEDs for high and low voltages
Output selection switch to select from 3.3v, 5v and Adjustable
On-board potentiometer for adjusting voltage from 1.25V up to within 0.5V of the input voltage. (20V max)
On/Off switch for entire board
Very Low Dropout Adjustable Breadboard Power Supply Circuit Diagram
Read more →